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Although geometric phases in quantum evolution are historically overlooked, their active control now
stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-
qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate
two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to
control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent
excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence
and provide insights for optimizing fast holonomic control in dissipative quantum systems.
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Besides its central role in the understanding of contem-
porary physics [1,2], the quantumgeometric phase is gaining
recognition as a powerful resource for practical applications
using quantum systems [3–5]. The manipulation of nano-
scale systems has progressed rapidly towards realizing
quantum-enhanced information processing and sensing,
but has also revealed the necessity for new methods to
combat noise and decoherence [6–8]. Because of their
intrinsic tolerance to local fluctuations [9,10], geometric
phases offer an attractive route for implementing high-
fidelity quantum logic. This approach, termed holonomic
quantum computation (HQC) [3,11–15], employs the cyclic
evolutionof quantumstates andderives its resilience from the
global geometric structure of the evolution in Hilbert space.
Arising both for adiabatic [16] and nonadiabatic [17] cycles,
geometric phases can be either Abelian (phase shifts) or non-
Abelian (matrix transformations) [18] by acting on a single
state or a subspace of states, respectively.
Recently, non-Abelian, nonadiabatic holonomic gates

using three-level dynamics [19] were proposed to match
the computational universality of earlier adiabatic schemes
[3,11–13], but also eliminate the restriction of slow evolu-
tion. By reducing the run time of holonomic gates, and thus
their exposure to decoherence, this advance enabled exper-
imental demonstration of HQC in superconducting qubits
[20], nuclear spin ensembles in liquid [21], and nitrogen-
vacancy (NV) centers in diamond [22,23]. However, these
initial demonstrations were limited to fixed rotation angles
about arbitrary axes, and thus required two nonadiabatic
loops of evolution, from two iterations of experimental
control, to execute an arbitrary gate [20–23]. Alter-
natively, variable angle rotations from a single nonadiabatic
loop can be achieved usingAbelian geometric phases [14,24]
or hyperbolic secant pulses [25–27], but these approaches are
complicated by a concomitant dynamic phase. To address
these shortcomings, non-Abelian, nonadiabatic single-loop
schemes [28,29] were designed to allow purely geometric,

arbitrary angle rotations about arbitrary axes with a single
experimental iteration.
In this Letter, we realize single-loop, single-qubit holo-

nomic gates by implementing the proposal of Ref. [29] in aΛ
system formed by optical transitions in the NV center. Our
approach controls the common detuning and the relative
amplitude and phase of a two-tone optical field that drives
two nondegenerate transitions of the Λ system. By working
with detuned optical driving to an excited state rather than
with resonant microwaves within the ground state [22,23],
we not only provide single-cycle operation and enhanced
spatial resolution, but also characterize how decoherence
affects gate operation. We perform quantum process tomog-
raphy on an overcomplete set of resonant and off-resonant
gates to demonstrate superior fidelities for off-resonant gates
due to decreased excitation to the lossy intermediate state.
This reveals that the detuned, single-cycle gates can offer an
advantage beyond simply eliminating one pulse in the
equivalent gate by two resonant pulses.
Methods.—We utilize a naturally occurring, single NV

center in bulk diamond cooled to 5 K. Below 20 K, optical
transitions from the NV spin-triplet ground state to its spin-
triplet excited state resolve narrow lines corresponding to the
fine structure of the orbital-doublet excited state [Figs. 1(a)
and 1(b)] [30]. Spin-spin and spin-orbit interactions lead to
optical selection rules that enable spin-photon entanglement,
as well as cycling transitions and Λ energy structures,
establishing the NV center as a leading platform for quantum
optics and communication demonstrations [10,31–34]. Here,
we connect the jmS ¼ −1i and jmS ¼ þ1i ground states to
the highest-lying excited state jA2i via a single tunable laser
that is electro-optically modulated to generate frequency
sidebands and nanosecond pulses [34]. We split the j# 1i
states by 1.461 GHz (261 G magnetic field) and match the
sideband separation to this splitting to simultaneously
address both transitions, as identified in red in the photo-
luminescence excitation scan [Fig. 1(b)]. Because of the low
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strain of 0.97 GHz, the three connected levels form a nearly
ideal Λ system [31].
In the rotating frame, our system is described by the

Hamiltonian

HðtÞ ¼ ℏΩðtÞ
2

ðujA2ih−1jþvjA2ihþ1jþH:c:ÞþΔjA2ihA2j;

ð1Þ

where ΩðtÞ describes the pulse envelope common to both
tones and Δ is the one-photon detuning [Fig. 1(a)]. The
individual transition amplitudes are scaled by the complex
constants u ¼ sinðθ2Þ and v ¼ − cosðθ2Þe

−iϕ, which are con-
trolled by tuning the relative strength and phase between the
carrier and sideband frequencies. Because of the condition
of two-photon resonance, this Hamiltonian admits a dark
state jdi ¼ cosðθ2Þj − 1iþ sinðθ2Þe

iϕjþ 1i that is decoupled
from the dynamics, and a bright state jbi ¼ sinðθ2Þj − 1i−
cosðθ2Þe

iϕjþ 1i, which undergoes excitation to jA2i. When
ΩðtÞ is a square pulse [i.e.,ΩðtÞ ¼ Ω for 0 ≤ t ≤ τ],HðtÞ is
time independent during the dynamics. Thus, the expected
value of the energy is conserved, remaining zero during the
evolution for any initial state starting in the subspace spanned
by j# 1i and ensuring the absence of a dynamic phase.
However, for the pulse duration τ ¼ 2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ Δ2

p ≡ T2π ,
this computational subspace undergoes cyclic, nonadiabatic

evolution and transforms via the purely geometric evolution
operator Uðθ;ϕ;Δ=ΩÞ¼ jdihdjþeiγjbihbj¼eiγ=2e−iðγ=2Þn·σ

[29], where n ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ, σ are the
Pauli matrices, and

γ ¼ πð1 − Δ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ Δ2

p
Þ: ð2Þ

Up to a global phase, Uðθ;ϕ;Δ=ΩÞ represents a rotation
by angle γ about the axis n in the Bloch sphere with poles
jzi ¼ j − 1i and j − zi ¼ jþ 1i, thus realizing arbitrary,
noncommuting gates in a single cycle. Geometric insight
is obtained by considering γ to be the Abelian geometric
phase acquired by the bright state jbi and equal to −A=2,
where A is the solid angle traced by jbðtÞi’s nonadiabatic
precession [Fig. 1(c)] [22,29].
Recently, Ref. [35] presented an investigation of the

described scheme using the jA2iΛ system at a zeromagnetic
field. There, a single-tone optical field addresses both
degenerate transitions, while its polarization determines
the bright state superposition of j# 1i that couples to jA2i
owing to special polarization-dependent selection rules.
Rather than using this elegant but atypical correspondence
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FIG. 1. Experimental system and holonomic concept. (a) Optical
NV Λ system. The j# 1i spin states of the NV triplet ground state
(GS) are linked to jA2i within the spin-orbit excited-state (ES)
manifold by a two-tone optical field with one-photon detuning Δ
and strengthΩðtÞ. (b)Photoluminescence excitation spectrum taken
by scanning a single laser frequency across the GS to ES transitions
while twomicrowave tones mix the population among the three GS
levels. (c)Geometric interpretation of theholonomic gates. The dark
state jdi undergoes trivial dynamics, while the bright state jbi
undergoes precession around a tilted axis with angle α on the
jbi=jA2iBloch sphere. After one nonadiabatic cycle, jbi acquires a
geometric phase γ proportional to the enclosed solid angle.
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FIG. 2. Phase shift gates ZðγÞ. (a) Experimental sequence
consisting of state preparation, optical excitation with control
parameters (θ, ϕ, Δ=Ω), and state tomography. (b) Time-resolved
photoluminescence, proportional to the jA2i population, as a
function of detuning Δ, showing oscillations between jbi¼jþ1i
and jA2i (θ ¼ 0). (c)Measured phase shifts γ, averagedover jxi and
jyi input states, as a function of Δ for ZðγÞ at two different optical
powers. The solid lines delineate the prediction according to
Eq. (2). (d) Gate fidelities via process tomography of the same
ZðγÞ gates. The solid lines are simulated fidelities incorporating an
excited-state lifetime T1 and dephasing Tϕ. (e) Dependence of the
fidelity of the resonant gateZðγ ¼ πÞ onΩ. The purple, orange, and
teal lines represent the simulated fidelities by sequentially adding
the effects of T1, Tϕ, and the spectral hopping σΔ.
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between polarization and qubit states, our application instead
employs a two-tone field that is generalizable to widespread
nondegenerate three-level systems [20,36–41]. Additionally,
we perform process tomography on a universal set of single-
qubit gates, including Hadamard and off-resonant gates, and
identify strategies to minimize decoherence during holo-
nomic control.
Our experiments begin by initializing the standard states

jxi, jyi, j# zi on the j# 1i Bloch sphere [Fig. 2(a)] [42].
Subsequently, a short laser pulsewith parameters (θ,ϕ,Δ=Ω)
implements the appropriate holonomic gate, and the resulting
state is characterizedby tomography along the samebasis set.
To determine the optical coupling Ω (in units of Rabi
frequency) and the time T2π of a single excitation cycle,
we measure the time-resolved photoluminescence, due to
spontaneous emission from jA2i, during a continuous square
pulse with the same (θ, ϕ, Δ=Ω). Figure 2(b) shows typical
coherent oscillations of the population between the bright
state jbi ¼ jþ 1i and jA2i as a function of detuning for a
drive field on the jþ 1i to jA2i transition (θ ¼ 0).
Results.—We start by characterizing arbitrary rotations

about the z axis via the gate set ZðγÞwith θ ¼ 0. This family
includes the widely used phase shift operations Pauli Z, S,
andT, corresponding to γ ¼ π, π=2, and π=4, respectively. In
Fig. 2(c), wemeasure the phase shift γ acquired as a function
of detuning Δ for the jxi and jyi input states. We extract γ
from the difference between the phases φ of the input and
output states, where φ ¼ tan−1ðYp=XpÞ using the Bloch
vector projections Xp (Yp) along the x (y) axis. The data for
two different Ω show good agreement with Eq. (2), delin-
eated by the solid lines.

Using quantum process tomography, we demonstrate that
the off-resonant Zðγ ≠ πÞ gates obtain higher fidelities than
the resonant Pauli Z gate [Fig. 2(d)]. Since the dominant loss
mechanisms stem from jA2i, detuned driving reduces this
detrimental exposure by decreasing both the maximal
excitation and gate operation time. The solid lines in
Fig. 2(d) represent the expected fidelities from a master
equation simulation [42] that uses an excited-state lifetime
(T1 ¼ 11.1 ns) and dephasing (Tϕ ¼ 18 ns) as previously
measured for this NV center [34]. Furthermore, we demon-
strate that the fidelity of the resonant PauliZ gate increases as
the run time T2π ∝ Ω−1 decreases [Fig. 2(e)] [45]. We
separate the theoretical contributions to decoherence due
to the lifetime T1 and dephasing Tϕ by incorporating their
effects sequentially. The remaining discrepancy with the
data, particularly at low optical powers, is largely reconciled
by introducing spectral hopping of the excited state’s energy,
modeled by detuning errors with a Gaussian standard
deviation σΔ ¼ 2π × 15 MHz. The experimental fidelities
saturate at F ¼ 0.86ð2Þ forΩ=2π > 252 MHz due to cross-
talk with nearby levels [Fig. 1(b)] and laser leakage before
and after the pulse caused by a finite extinction ratio [42].
We proceed to examine resonant holonomic π rotations

about arbitrary axes in Fig. 3. Before focusing on process
tomography of the Pauli X, Pauli Y, and Hadamard gates
(denoted X, Y, H, respectively [42]), we verify full control
over the (θ, ϕ) degrees of freedom and illuminate how the
relationship between the gate’s input state and the dark or
bright state axis affects decoherence. In Fig. 3(a), we
initialize jzi and apply gates with variable θ, holding
ϕ ¼ 0. As schematically illustrated, this holonomic
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transformation induces effective Rabi oscillations between
jzi and j − zi as θ is increased. Notably, the discrepancy
between the realized population transfer (data points) and the
decoherence-free transfer (dashed lines) varies as a function
of θ, being smallest (largest) at θ ¼ 0 (θ ¼ π) when the
initialized state jzi is the dark (bright) state of the gate
[Fig. 3(a)]. Correspondingly, we initialize jxi and apply gates
with variableϕ, holding θ ¼ π=2 [Fig. 3(b)]. In this case, we
display Xp and Yp of the final state, showing it to rotate
around the equator twice as ϕ rotates once, as expected. The
visibility of the final state (gray envelope) is maximal
(minimal) when jxi is aligned with the gate’s dark (bright)
state. Since the on-resonant gates (π rotations) are invariant
under interchange of jdi and jbi, there exist two equivalent
choicesfθ; θ þ πg for eachgate in the absenceof dissipation.
However, for implementations where the intermediate state
dominates loss, our observations demonstrate that when the
input state jψ ii is known (e.g., in state preparation), the more
effective holonomic gate minimizes jhψ ijbij2.
We achieve process fidelities for X, Y, and H of 0.75(2),

0.78(2), and 0.74(2), respectively, at Ω=2π ¼ 168 MHz
[Figs. 3(c)–3(e)]. The fidelities of these gates display a
similar scaling versus Ω as the Z gate. However, when
comparingwith the simulated fidelities (solid lines) using the
same excited-state T1, Tϕ, and σΔ, the data for X, Y, and H
realize lower fidelities than expected byourmodel [Fig. 3(f)].
This is explained by the presence of additional experimental
nonidealities from turning on two drive frequencies, such as
enhanced crosstalk, relative phase errors, and extraneous
higher-harmonic sidebands.We improve the fidelity ofX and
Y to 0.79(2) at Ω=2π ¼ 210 MHz, but H decreases in
fidelity. This effect may stem from the greater susceptibility
of H to systematic errors.
Finally, we demonstrate tunable rotations around the x and

y axes by varying the detuning of the optical pulse.
Initializing jzi, we verify that these gates rotate the pop-
ulation from jzi to j − zi and back as the laser frequency is
varied across one-photon resonance [Fig. 4(a), θ ¼ π=2].
Focusing on Δ=Ω ¼ #1=

ffiffiffi
3

p
for Ω=2π ¼ 152 MHz, we

realize process fidelities for the Xðπ=2Þ (i.e.,
ffiffiffiffiffiffiffiffi
NOT

p
gate),

Xð−π=2Þ, Yðπ=2Þ, and Yð−π=2Þ gates of 0.83(2), 0.80(2),
0.82(2), and 0.80(2), respectively, where the sign of the
rotation is controlled by the sign ofΔ [Figs. 4(b)–4(d)] [42].
Because of decreased excitation, these gate fidelities exceed
those of the resonant gates at the same optical power (∼ 0.74
at Ω=2π ¼ 150 MHz). In the resonant scheme for non-
adiabatic HQC [19], arbitrary angle rotations required two π
rotations around different axes: for example, Yðπ=2Þ ¼
XH. Our data demonstrate that in applications involving
dissipative intermediate states, the single-loop scheme sig-
nificantly outperforms the equivalent composite gate, which
would achieve here an estimated fidelity of 0.55 (≈ 0.742),
andmoreover exceeds the fidelity of a single resonant gate. In
comparison, if the single-loop gates are implemented by
microwave driving within the ground state [22,23], the

intermediate level jmS ¼ 0iwould decohere at a rate (limited
by ground-state dephasing T&

2 ∼ 10 μs) comparable to the
computational states j# 1i. This extended coherence ena-
bles higher fidelities, but decreased occupation of j0i by off-
resonant driving would not be an advantage beyond its
reduction in the number of gates applied.
Discussion.—The optical gate fidelities are limited by

excited-state occupation and crosstalk between the driving
fields. Improving the rise time and extinction of our optical
pulses would enable faster transit through the excited state
without side effects and also reduce errors due to the
dynamic phase for the detuned gates, which are fully
geometric only for perfect square pulses [29]. Although
for Ω=2π ¼ 152 MHz, the current rise or fall times
(∼1.2 ns) contribute negligible errors to Xðπ=2Þ, we
estimate that dynamic errors would begin to limit the
fidelity for Ω=2π > 600 MHz [42]. Crosstalk between the
Λ transitions can be improved by using orthogonal polar-
izations for the two driving frequencies, rather than the
same linear polarization, to exploit the polarization selec-
tivity of the transitions. In Ref. [35], faster gate speeds and
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reduced crosstalk in the single-tone implementation
enabled fidelities of ∼0.90 for the resonant Pauli gates,
while calculations are required to compensate the driving
polarization for each specific NV strain and orientation.
Our experiments establish universal single-qubit holo-

nomic control of solid-state spins with optical spatial
resolution and single-cycle operation. A path toward
two-qubit gates and universal computation is envisioned
by leveraging strong coupling to nearby nuclear spins [46]
or cavity-mediated interactions to other NV centers [47,48].
Fundamentally, our holonomic operations are efficient in
both time and number of control parameters for the
arbitrary manipulation of qubit levels that are not directly
coupled. Thus, they are relevant to hybrid systems where
disparate quantum systems are indirectly linked via an
intermediary. Holonomic state transfer may be more
efficient than sequential, multipulse operations through
the dissipative intermediate system [49]. Additionally,
our methods offer an alternative when far-detuned stimu-
lated Raman transitions (Δ ≫ Ω), which effect much
slower rotations, are impractical due to the interplay
between decoherence rates and level separations [50–52].
The strategies demonstrated here for optimizing fast
holonomic control enrich the quantum control toolbox to
adapt to a growing diversity of useful quantum systems.

We thank C. G. Yale and A. Baksic for valuable discus-
sions. This work was supported by the Air Force Office of
Scientific Research MURI No. FA9550-15-1-0029 and
No. FA9550-14-1-0231, and National Science Foundation
Grant No. DMR-1306300. F. J. H. and D. D. A. contributed
to the experimental design, analysis of data, and preparation
of the manuscript and were supported by the U.S.
Department of Energy, Office of Science, Office of Basic
Energy Sciences, Materials Sciences and Engineering
Division. Work at the University of Konstanz was supported
by the German Research Foundation (SFB 767).

Note added.—Recently, we became aware of two comple-
mentary works [35,53].
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